ESCAP/WMO Typhoon Committee Forty-ninth Session 21 - 24 February 2017 Yokohama, Japan FOR PARTICIPANTS ONLY WRD/TC.49/7.2 30 January 2017 ENGLISH ONLY

REPORT ON AMENDMENTS TO THE TYPHOON COMMITTEE OPERATIONAL MANUAL

(submitted by the Rapporteur)

Summary and Purpose of Document:

This document presents draft amendments to the Typhoon Committee Operational Manual - Meteorological Component (TOM) proposed by the Members.

ACTION REQUIRED:

The Committee is invited to review and approve the proposed amendments to the TOM.

APPENDIXES:

A) DRAFT TEXT FOR INCLUSION AT SESSION REPORT B) UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

APPENDIX A: DRAFT TEXT FOR INCLUSION IN THE SESSION REPORT

x.x Review of Typhoon Committee Operational Manual (TOM)

- 1. The Session noted that the Typhoon Committee Operational Manual (TOM) rapporteur requests WMO to publish and upload the 2016 edition of TOM on the Tropical Cyclone Programme (TCP) Website as submitted by the Rapporteur, with the amendments given in Appendix XX.
- 2. The Committee expressed its appreciation to the rapporteur for update of TOM.

APPENDIX B:

UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

1. The Typhoon Committee Operational Manual - Meteorological Component (TOM) has been reviewed and updated every year since its first issue in 1987. The 2016 edition was completed and posted on the WMO website in March 2016 in accordance with the approval of amendments to the 2015 edition by the Typhoon Committee 48th session (22 to 25 February 2016 Honolulu, Hawaii, USA).

2. At the 48th session, the Committee decided that the rapporteur of the Japan Meteorological Agency (JMA) continue arrangements for updating the TOM. In this connection, on 6 September 2016, the rapporteur, Mr. Chiashi Muroi, Head of the JMA Tokyo Typhoon Center invited the focal points of the meteorological component of the Members to provide proposals for updates to the TOM.

3. As of the end of January 2017, proposals for updates to the TOM had been submitted by the four focal points of Hong Kong, China, Japan, Macao, China and Thailand.

4. Proposed amendments to the TOM are attached as Annex 1 and given below are the major points of the amendments:

- Update of the information on ship and buoy observations (Chapter 2)
- Update of the information associated with the replacement from MTSAT-2 to Himawari-8/9 of the geostationary meteorological satellite operated by JMA (Chapter 3, Appendix 2-F, Appendix 7-A)
- Update of the information on the meteorological telecommunication network (Chapter 5)
- Update of the information on stations from which enhanced observations are available (Appendix 2-A, Appendix 2-B)
- Update of the information on RSMC Tokyo tropical cyclone prediction models (Appendix 3-A)
- Update of the information on the method for the tropical cyclone analysis and forecasting (Appendix 3-C)
- Update of the information on Non-Hydrostatic Model (NHM) run by HKO (Appendix 3-E)

Page	Line	Proposed Amendment	Comments
APPEN	DICES		
	L22	Schedule of <u>HimawariMTSAT</u> observation and disseminations	Update of the information associated with the replacement from MTSAT-2 to Himawari-8/9 of the geostationary meteorological satellite operated by JMA
Chapte	r 2.2		
9	L28	Hourly marine meteorological observations, namely air pressure and sea surface temperature are also made during tropical cyclone seasons by the drifting buoys deployed by Hong Kong, China over the South China Sea with support of the Hong Kong Voluntary Observing Ships. All reports are coded in the BUOY code (FM18), and immediately put onto the GTS with the header "IOBC01 VHHH" and "IOBX02 KWBC" respectively for buoys operated solely by Hong Kong, China and for buoys operated under the Barometer Upgrade Scheme of the Global Drifter Programme of Data Buoy Cooperation Panel of ICOMM	Addition of the information on the ship and buoy observations operated by HKO
Chapte	r 3.1		
15	Table 3.2	To be replaced by Annex 1-1	Update of the information on the NWP products provided by JMA
17	Table 3.3	To be replaced by Annex 1-2	Update of the information on the satellite products provided by JMA and revision of the information on the wave data provided by JMA
Chapte	r 4.5	·	
20	L19	In accordance with the International Civil Aviation Organization (ICAO) Annex 3 - Meteorological Service for International Air Navigation/-WMO <u>No. 49</u> Technical Regulations, <u>Volume II: Meteorological Service</u> for International Air Navigation (WMO-No. 49 Vol. 2) (C.3.1) , tropical	Change of expression of reference documents on warnings and advisories for aviation

		cyclone warnings, required for the	
		international air navigation, are	
		issued by designated	
		meteorological watch offices	
		(MWO) as SIGMET messages.	
20	L30	The content and order of elements	
		in a SIGMET message for tropical	
		cyclone shall be in accordance with	
		ICAO Annex 3/WMO-No. 49 Vol. 2	
		Technical Regulations (C 3.1)	
20	I 45	The format of the tropical cyclone	
20	115	advisories shall be in accordance	
		with the ICAO Appex $3/WMO_No$	
		40 Vol 2 Technical Populations	
		$\frac{49}{(C_2, 1)}$	
Charte	Г 4	[[[]]] .	
Chapte	r 5.4	The last share 11 Acres 10	
22	Figure	To be replaced by Annex 1-3	Addition of regional circuits between
	5.1		Bangkok and Offenbach
23	Table 5.1	To be replaced by Annex 1-4	Update of present operational status
			of the meteorological
			telecommunication network related
			to Hong Kong, China, Macao, China,
			Japan and Thailand
APPEN	DIX 2-A		
37	p.2	To be replaced by Annex 1-7	Addition of stations from which
			enhanced surface observation are
			available in Thailand
APPEN	DIX 2-B		
38	p.1	To be replaced by Annex 1-8	Addition of stations from which
	1	1 5	enhanced upper-air observation are
			available in Thailand
APPEN	DIX 2-D	I	
40	n.3	To be replaced by Annex 1-9	Revision of the information of radar
10	pie		stations in Hong Kong, China
APPEN	DIX 2-F	<u></u>	
67	n 1	To be replaced by Anney 1-10	Undate of the information of satellite
07	p.1	To be replaced by finnex 1 10	imagery receiving facilities in Hong
			Kong China
ADDEN		<u></u>	Kong, China
71	υιλ 3 - Α Ι ζ	(a) Clobal Spacemal Madel	Undate of the information of Clabel
/1	LO	(a) Gibbal Spectral Model	Opuate of the information of Global
	T 4 C	$\begin{bmatrix} (65M-10/403) \\ \hline \end{bmatrix}$	Spectral Model
71	L46	Bulk formula <u>tionse for sea surface</u>	
		fluxes with similarity functions by	
		Louis (1982) and for land of	
		surface fluxes based on the	
		Monin-Obukhov similarity theory	
		by Beljaars and Holtslag (1991)	
71	L53	Simple Biosphere Model (SiB) by	
		Sellers et al. (1986) and Dai et al.	
		(2003) Sato et al. (1989a.h)	
APPEN	DIX 3-B	1	1
81	n.8	To be replaced by Annex 1-11	Revision of description of the
01	P.0		Multi-Model Ensemble Technique
I		1	rand Frouer Endemble reeningue

			used by Hong Kong, China
APPEN	DIX 3-C		× ×
108	L34	Deterministic forecasts of tropical cyclone intensity derived from EPS data can also be calibrated using an artificial neural network. <u>The</u> <u>chance of rapid intensification can</u> <u>be estimated using</u> <u>statistical-dynamical methods such</u> <u>as logistic regression and Naïve</u> <u>Bayes classifier with input</u> <u>parameters from deterministic</u> <u>model forecast.</u>	Addition of the information on the model output statistics methods for intensity prediction
108	L39	Rainfall related with the typhoon <u>isare</u> roughly divided into the following four categories <u>:</u>	Correction of the grammatical error
108	L47	Rainfall <u>amount is</u> predicted by the primitive equation model including cumulus parameterization scheme.	
108	L55	The MOS method is based on the statistical relations between the rainfall amount and the predictors obtained from the NWP products at the grid points. <u>Model precipitation</u> forecast at specific locations due to passage or landfall of tropical cyclones can be calibrated using frequency matching technique. Rainfall forecast from EPS systems can be used to generate the probability of heavy precipitation, various scenarios and their likelihood of occurrence caused by the tropical cyclones.	Addition of the information on the model output statistics method for rainfall prediction
109	L49	1.6.5 <u>Nowcast and </u> ¥very-short range prediction of rainfall by radar observation	Revision of the title of subsection along with the contents of the body
109	L51	Radar <u>s areis used to detect and track <u>rain bands in</u> tropical cyclones</u>	Revision of the description on the very-short range prediction of
		and severe storms such as thunderstorms. Motion of <u>radarrain</u> echoes over successive radar scans, for example, every 6 minutes can be retrieved using methods such as maximum correlation and <u>variational</u> optical flow-constraint. Rainfall amount can be estimated based on the Z-R relationship, which is the relationship between radar rain -reflectivity and the rainfall amount.	rainfall by radar observation
109	L58	Accumulated rainfall over a forecast region around 6 to 9 hours	Addition of the information on the very-short range prediction of

		T	r
		ahead can be obtained by	rainfall by radar observation
		extrapolating the radar echoes	
		along the retrieved motion field and	
		converting their intensity into	
		rainfall amount through the Z-R	
		relationship By separating the	
		motion field of a tropical cyclone	
		into a translational part and a	
		rotational part followed by	
		<u>rotauonar part, ronoweu by</u>	
		extrapolating the radar echoes	
		based on the rotation and then the	
		translation, the resulting projected	
		radar echoes will result in better	
		<u>rainfall forecast.</u>	
110	L8	The guides for detection of rainfall	Correction of the grammatical error
		area <u>are</u> is summarized as follows:	
110	L39	Quantitative precipitation estimate	Addition of the information on the
		of tropical cyclone using satellite	very-short range prediction of
		observations can be retrieved	rainfall by satellite observation
		through statistical method with the	
		use of other meteorological data.	
		For instance, ground-based radar	
		data can be utilized to derive the	
		reflectivity using neural network	
		for landfalling tropical cyclones	
		with inputs from infra rod and	
		with hipus from hilla-red and	
		Visible channels of the imager data	
		from the geostationary satellites,	
		where the blended reflectivity is	
		then applied to estimate the	
		<u>rainfall amount.</u>	
APPEN	DIX 3-E		
120-	p.1-p.2	To be replaced by Annex 1-12	Update of the detailed information on
122			Non-Hydrostatic Model (NHM) run
			by HKO
APPEN	DIX 5-A		
138	p.2	To be replaced by Annex 1-13	Revision of the contact detail of
			Macao, China
APPEN	DIX 5-C		
143	p.3	To be replaced by Annex 1-14	Revision of the table about collection
	-		and distribution of information
APPEN	DIX 5-D	I	
146		To be replaced by Annex 1-15	Revision of the table of abbreviated
110			headings in accordance with
			WMO-No 386
APPFN	DIX 7-4		WHO 110.000
156		To be replaced by Appey 1-16	Undate of the information associated
130		To be replaced by Annex 1-10	with the replacement to
			With the replacement to
			mateoralogical actallity
			meteorological satellite operated by
			JMA

Table 3.2 NWP products (GSM and EPS) provided by RSMC Tokyo - Typhoon Center (Available at http://www.wis-jma.go.jp/cms/)

Model	GSM	GSM	GSM
Area and resolution	Whole globe, 1.25°×1.25°	20°S–60°N, 60°E–160°W 1.25°×1.25°	Whole globe, 2.5°×2.5°
Levels and elements	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 150 hPa: Z, U, V, T 200 hPa: Z, U, V, T, ψ , χ 250 hPa: Z, U, V, T, H, ω 400 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω 1000 hPa: Z, U, V, T, H, ω Surface: P, U, V, T, H, R†	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 200 hPa: Z, [§] , U [§] , V [§] , T [§] , ψ , χ 250 hPa: Z, U, V, T 300 hPa: Z, U, V, T, D 400 hPa: Z, U, V, T, D 500 hPa: Z, [§] , U [§] , V [§] , T [§] , D [§] , ζ 700 hPa: Z, [§] , U [§] , V [§] , T [§] , D [§] , ω 850 hPa: Z, [§] , U [§] , V [§] , T [§] , D [§] , ω 850 hPa: Z, U, V, T, D, ω 1000 hPa: Z, U, V, T, D Surface: P [¶] , U [¶] , V [¶] , T [¶] , D [¶] , R [¶]	10 hPa: Z*, U*, V*, T* 20 hPa: Z*, U*, V*, T* 30 hPa: Z°, U°, V°, T° 50 hPa: Z°, U°, V°, T° 70 hPa: Z°, U°, V°, T° 100 hPa: Z°, U°, V°, T° 150 hPa: Z*, U*, V*, T* 200 hPa: Z, U, V, T 250 hPa: Z°, U°, V°, T° 300 hPa: Z, U, V, T, D*‡ 400 hPa: Z, U, V, T, D*‡ 500 hPa: Z, U, V, T, D \$50 hPa: Z, U*, V*, T*, D*‡ Surface: P, U, V, T, D*‡, R†
Forecast hours	0–84 every 6 hours and 96–192 every 12 hours for 12UTC initial † Except analysis	0–84 (every 6 hours) § 96–192 (every 24 hours) for 12UTC initial ¶ 90–192 (every 6 hours) for 12UTC initial	0–72 every 24 hours and 96–192 every 24 hours for 12UTC ° 0–120 for 12UTC † Except analysis * Analysis only
Initial times	00, 06, 12, 18UTC	00, 06, 12, 18UTC	00UTC and 12UTC ± 00UTC only

Model	One-week EPS
Area and resolution	Whole globe, 2.5°×2.5°
Levels and elements	250 hPa: μU, σU, μV, σV 500 hPa: μZ, σZ 850 hPa: μU, σU, μV, σV, μT, σT 1000 hPa: μZ, σZ Surface: μP, σP
Forecast hours	0–192 every 12 hours
Initial times	00, 12UTC

Table 3.3 List of other products provided by RSMC Tokyo - Typhoon Center (Available at http://www.wis-jma.go.jp/cms/)

Data	Contents / frequency (initial time)
Satellite products	High density atmospheric motion vectors (BUFR) (a) MTSAT-2 (VIS, IR, WV), 60S-60N, 90E-170W VIS: every hour (00-09, 21-23 UTC), IR and WV: every hour (b) Himawari-8 (VIS, IR, WVx3: every hour), 60S-60N, 90E-170W VIS: every hour (Northern Hemisphere: 00-09, 21-23 UTC; Southern Hemisphere: 00-08, 21-23 UTC), IR and WV: every hour (c) METEOSAT-7 (VIS, IR, WV) VIS: every 1.5 hours between 0130 and 1500 UTC IR and WV: every 1.5 hours Clear Sky Radiance (CSR) data (BUFR) (a) MTSAT-2 (IR, WV) radiances and brightness temperatures averaged over cloud-free pixels: every hour (b) Himawari-8 radiances and brightness temperatures averaged over cloud-free pixels: every hour
Tropical cyclone	Tropical cyclone related information (BUFR)
Wave data	Global Wave Model (GRIB2) • significant wave height • prevailing wave period • wave direction Forecast hours: 0–84 every 6 hours (00, 06 and 18UTC) 0–84 every 6 hours and 96-192264 every 12 hours (12 UTC)
Observational data	 (a) Surface data (TAC/TDCF) SYNOP, SHIP, BUOY: Mostly 4 times a day (b) Upper-air data (TAC/TDCF) TEMP (parts A-D), PILOT (parts A-D): Mostly twice a day
Storm surge	 Storm surge model for Asian area storm surge distribution (map image) time series charts (at requested locations) The plotted values are storm surges, predicted water levels, astronomical tides, surface winds, and sea level pressures. Forecast hours: 0–72 every 3 hours (00, 06 12, and 18UTC) Only in the case of a tropical cyclone being in the forecast time (Available at https://tynwp-web.kishou.go.jp/)
SATAID service	 (a) Satellite imagery (SATAID) Himawari-8 (b) Observation data (SATAID) SYNOP, SHIP, METAR, TEMP (A, B) and ASCAT sea-surface wind (c) NWP products (SATAID) GSM (Available at http://www.wis-jma.go.jp/cms/sataid/)

Figure 5.1 Meteorological telecommunication network for the Typhoon Committee

Table 5.1:Present operational status of the meteorological telecommunication networkfor the Typhoon Committee region

1.	<u>Mai</u> n T <u>elecommunicatio</u> n <u>Network</u>	Present Operational Status
	Beijing - Tokyo	Cable (MPLS), TCP/IP Beijing 16 Mbps/Tokyo 10 Mbps
	Beijing - Offenbach	Cable (FR), 48 kbps (MPLS) TCP/IP Beijing 16 Mbps/Offenbach 50 Mbps
	Washington - Tokyo	Cable (MPLS), TCP/IP Washington 50 Mbps/Tokyo 10 Mbps
2.	<u>Main regional circuit</u>	
	Tokyo - Bangkok	Cable (MPLS), TCP/IP Tokyo 2 Mbps/Bangkok 128 kbps
3.	<u>Regional circuits</u>	
	Bangkok - Beijing	64 kbps leased line CMACast (Satellite broadcast)
	Bangkok - Hanoi	64 kbps leased line, FTP protocol
	Bangkok – Hong Kong	Internet, FTP protocol
	Bangkok - Phnom Penh	Internet (VPN), TCP/IP
	Bangkok - Vientiane	Cable (DDN), 64 kbps, Internet, FTP protocol
	Beijing - Hanoi	64 kbps leased line, CMACast (Satellite broadcast)
	Beijing - Hong Kong	Cable (MSTP), 4 Mbps TCP/IP CMACast (Satellite broadcast)
	Beijing - Macao	2Mbps leased line CMACast (Satellite broadcast)
	Beijing - Pyongyang	64 kbps leased line,; CMACast (Satellite broadcast)
	Beijing - Seoul	Cable (FR), 32 kbps (CIR) TCP/IP
	Beijing - Vientiane	CMACast (Satellite broadcast)
	Hong Kong - Macao	Internet (VPN) ISDN, 128 kbps, TCP/IP
	Tokyo - Hong Kong	Cable (MPLS), TCP/IP

Tokyo - Seoul Cable (MPLS), TCP/IP Tokyo 10 Mbps/Seoul 4 Mbps

4. <u>Inter-regional circuits</u>

Bangkok - Kuala Lumpur	Cable (MPLS), TCP/IP 64 kbps
Bangkok - Singapore	Cable (MPLS), TCP/IP 64 kbps

1 FAX

1 FAX

Bangkok - Offenbach

Tokyo - Manila

Internet, FTP protocol

Cable (MPLS), TCP/IP Tokyo 2 Mbps/Manila 64 kbps

5. <u>RTH radio broadcast</u>

Bangkok

Tokyo

6. <u>Satellite broadcast</u>

Operated by China: Asiasat-4 (122.2°E)

Operated by Japan: HimawariCast

(JCSAT-2, 154°E)

7. Internet Cloud Service

Operated by Japan: HimawariCloud Operational observations, warnings, NWP products, satellite image and fax distribution

Operational satellite image, NWPand-

products, in-situ observation data and ASCAT ocean surface wind data distribution

Operational satellite image in full resolutions and bands

data

Philippines

	(98):	132, 330, 434, 538, 642, 752,	133, 333, 435, 543, 644, 753,	135, 336, 437, 546, 646, 755,	222, 425, 440, 548, 648, 836,	232, 427, 444, 550, 653, 851	233, 428, 446, 555, 741,	324, 429, 447, 558, 746,	325, 430, 526, 618, 747,	328, 431, 531, 630, 748,	329, 432, 536, 637, 751,
Repu	blic of Ko	orea									
	(47):	090,	095,	098,	099,	100,	101,	102,	105,	106,	108,
		112, 135,	114, 136,	115, 137,	119, 138,	121, 140,	127, 143,	129, 146,	130, 152,	131, 155,	133, 156,
		159, 192	162,	165,	168,	169,	170,	175,	184,	185,	189,
Thail	and										
	(48):	300, 353, 381, 432, <mark>478,</mark> 565,	303, 354, 383 , 437 , 480, 566 ,	310, 356, 400, <mark>450,</mark> 500, 567,	327, 357, 403, 453, 501, 568,	328, 372, 405, 455, 517, 569,	329, 375, 407, 456, 532, 570,	330, 376, 425, 459, 551, 580,	331, 378, 426, 462, 552, 583	351, 379, 430, 465, 561,	352, 380, 431, 477, 564,
USA											
	(91):	203, 366,	212, 367,	258, 369,	317, 371,	324, 376,	334, 378,	339, 408,	348, 413,	353, 425,	356, 434
Viet Nam											
	(48):	820, 917,	826, 918,	839, 920	845,	848,	855,	870,	877,	900,	914,

Note: Name, latitude, longitude and elevation of these stations are included in Weather Reporting, Volume A - Observing Stations (WMO Publication No. 9).

LIST OF STATIONS FROM WHICH ENHANCED UPPER-AIR OBSERVATIONS ARE AVAILABLE

The following stations will make 6-hourly upper-air observations when they are within 300 km of the centre of a tropical cyclone of TS intensity or higher:

Cambodia

China

(54):	857		
(57):	083,	494,	972
(58):	150,	457,	847
(59):	316,	758,	981

Democratic People's Republic of Korea

(47): 041, 058

Hong Kong, China

(45): 004
 # upper-air observations are made by wind profiler at 06 and 18 UTC
 normally, but
 radiosondes will be launched when warranted by local wind conditions

Japan

(47): 401, 412, 418, 582. 600, 646. 678, 741, 778, 807, 827, 909, 918, 945, 971*, 991* * except 18 UTC

Lao People's Democratic Republic

Macao, China

Malaysia

(48):	601,	615,	650,	657
(96):	413,	441,	471,	481

Philippines

(98): 223, 433, 444, 618, 646, 573

Republic of Korea

(47):	090,	102,	122,	138,	158,	169,	185
· · ·	/-	,	·,	,	,	,	,	

Thailand

(48):	327,	354,	378,	407,	431,	453,	480,	500,	551,
	565,	568							

Annex 1-9 APPENDIX 2-D, p.3

Name of the Member Hong Kong, China

NAME OF STATION		Tai Mo Shan	Tate's Cairn m		
SPECIFICATIONS	Unit				
Index number		45009	45010		
		22° 25′ N	22° 21´ N		
Location of station		114° 07′ E	114° 13´ E		
Antenna elevation	m	968	582		
Wave length	cm	10.6	10.3		
Peak power of transmitter	kW	650	650		
Pulse length	μs	1.0/1.8	1.0/2.0		
Sensitivity minimum of receiver	dBm	-117	-114		
Beam width (Width of over -3dB deg antenna gain of maximum)		0.9(H) 0.9(V)	0.9		
Detection range	km	500	500		
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled	Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually		2		
DATA PROCESSING					
MTI processing 1.Yes, 2.No		2	2		
Doppler processing 1.Yes, 2.No		1	1		
Display 1.Digital, 2.Analog		1	1		
OPERATION MODE (When tropic cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	al	3 (Continuous)	3 (Continuous)		
PRESENT STATUS 1.Operational 2.Not operational (for research etc.)		1	1		

Annex 1-10 APPENDIX 2-F, p.1

SATELLITE IMAGERY RECEIVING FACILITIES AT TYPHOON COMMITTEE MEMBERS

Member	St	ation	Himawari 1. Himawari Cloud 2. Himawari Cast	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS
Cambodia			1, 2		
China	Beijing Shanghai Shenyan Guangzhou Cheng-chou Cheng-tu Lan-chou Kunming Changsha Nanjing Harbin	(39.9°N, 116.4°E) (31.1°N, 121.4°E) (41.8°N, 123.6°E) (23.1°N, 113.3°E) (34.7°N, 113.7°E) (31.2°N, 114.0°E) (36.1°N, 103.9°E) (25.0°N, 102.7°E) (28.2°N, 113.1°E) (32.0°N, 118.8°E) (45.8°N, 126.8°E)	1	1, 2 2	
Democratic People's Republic of Korea	Pyongyang	(39.0°N, 125.8°E)		1	
Hong Kong, China*	Kowloon	(22.3°N, 114.2°E)	1, 2 Receiving- Himawari-8 (replaceme nt of- MTSAT)- via Internet- download- and- HimawariC ast	1	
Japan	Minamitorishima	(24.3°N, 154.0°E)	2		

*Hong Kong, China receives AQUA (MODIS), NPP(CrIs, VIIRS, ATMS), FY-2 (S-VISSR), and TERRA (MODIS).

Item	Method	Type of output
Name of the method	The Multi-Model Ensemble Technique	
Description of the method	An unweighted position and motion vector consensus of the tropical cyclone forecast tracks given by the global models of the European Centre for Medium-Range Weather Forecasts (ECMWF)UKMO (EGRR), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP) and the United Kingdom Meteorological Office (UKMO)European Centre- for Medium-Range Weather Forecasts (ECMWF). Frequency of forecast: 2 times a day	24, 48, 72, 96 and 120-hr forecast positions
	 References: [1] James S. Goerss, 2000: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models, Monthly Weather Review, Vol. 128, p.1187-1193. [2] Russell L. Elsberry, James R. Hughes, and Mark A. Boothe, 2008: Weighted Position and Motion Vector Consensus of Tropical Cyclone Track Prediction in the Western North Pacific, Monthly Weather Review, Vol. 136, p.2478-2487. [3] Y.T. Tam, W.K. Wong and M.Y. Chan, 2015: Error Characteristics of Numerical Weather Prediction Model Ensemble in Tropical Cyclone Track Prediction. [http://www.weather.gov.hk/publica/reprint/r1167.pdf] 	

Name of the Member Hong Kong, China

Outline of HKO – Non-Hydrostatic Model (NHM)

Name of the method:

Non-Hydrostatic Model (NHM)

Description of the method:

HKO operates the NHM system based on JMA-NHM (Saito *et al.* 2006) with horizontal resolution at 10-km and 2-km to provide forecasts up to 72 hours and 15 hours ahead respectively (Wong 2010).

In NHM, a 3-dimensional variational data assimilation (3DVAR) system is used to generate the initial condition on model levels using the following meteorological observations:

(A)	<u>GTS</u>	
	SYNOP, SHIP and BUOY	synoptic stations, ship and buoy data
	TEMP and PILOT	radiosonde and pilot data
	AMDAR and AIREP	aircraft data
	AMV	atmospheric motion vectors from <u>Himawari-8MTSAT-2</u>
	ATOVS	retrieved temperature profiles from NOAA
	Ocean surface wind	scatterometer wind retrieval data from ASCAT,
		RAPID-SCAT and HY2A
	Dropsonde	tropical cyclone wind observations from DOTSTAR
	IASÍ	temperature and humidity retrieval profile data from
		EUMETSAT Metop IASI (Infrared Atmospheric Sounding
		Interferometer)

(B) <u>Regional data exchange</u> Data from automatic weather stations over the south China coastal areas

- (C) Local data
 - (i) Automatic weather station data
 - (ii) Wind profiler data
 - (iii) Doppler weather radar data

(iv) Radar retrieved wind data (u and v) on 1-5 km levels based on multiple weather radars in Hong Kong and the Pearl River Delta region, China

(v) GPS total precipitable water vapour

The 3DVAR analysis for 10-km NHM is produced eight times a day at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Hourly analysis is performed for the 2-km NHM.

Specifications of the forecast model are given in the following table:

Basic equations	Fully compressible non-hydrostatic governing equations
Vertical coordinates	Terrain following height coordinates system
Forecast parameters	wind (u,v,w), 3-dimensional pressure, potential temperature, specific humidity of water vapour, cloud water, cloud ice, rain water, hail/graupel and snow
Map projection	<u>10-km NHM: Lambert Conformal</u> <u>2-km NHM:</u> Mercator
Number of grid points	10-km NHM: 841x515, 50 levels 2-km NHM: 305x305, 60 levels
Forecast range	10-km NHM: 72 hours 2-km NHM: 15 hours
Initial condition	Analysis from NHM 3DVAR on model levels

Boundary condition	For 10-km NHM, 3-hourly interval boundary data including horizontal wind, temperature, relative humidity, geopotential height and surface pressure from ECMWF IFS forecast at horizontal resolution of 0.125 degree in latitude/longitude and on 25 pressure levels (1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10,7,5,3,2 and 1 hPa) For 2-km NHM, <u>3-</u> hourly interval boundary data provided from <u>ECMWF IFS10-km NHM</u> forecasts
Nesting configuration	One-way nesting
Topography and land-use	USGS GTOPO30 (30 second data smoothed to 1.5 times of horizontal resolution) USGS Global Land Cover Characterization (GLCC) 30 second data
Dynamics	Non-hydrostatic governing equations solved by time-splitting horizontal-explicit-vertical-implicit (HEVI) scheme using 4-order centred finite difference in flux form
Moisture process	<u>Tiedtke-based bulk mass fluxKain-Fritsch</u> convective parameterization (<u>HKOJMA-NHM</u> version) Three ice bulk microphysics scheme
Surface process	Flux and bulk coefficients: <u>Land:</u> Beljaars and Holtslag (1991) <u>Sea: Wong, Sumdin and Lai (2010)</u> Stomatal resistance and temporal change of wetness included 4-layer soil model to predict ground temperature and surface heat flux.
Turbulence closure model and planetary boundary layer process	Mellor-Yamada-Nakanishi-Niino Level <u>2.5</u> ³ (MYNN-2.5 3) (Nakanishi and Niino, 2004) with partial condensation scheme (PCS) and implicit vertical turbulent solver. Height of PBL calculated from virtual potential temperature profile.
Radiation	Long wave radiation process follows Kitagawa (2000) Short wave radiation process using Yabu and Kitagawa (2005) Prognostic surface temperature included; Cloud fraction determined from PCS.

Reference

Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization and land surfaces in atmospheric models. *J. Appl. Meteor.*, **30**, 327-341.

ECMWF, 2015: Convection. *IFS Documentation CY41R1*, Part IV, Chapter 6, ECMWF, 73-90. [Available at http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation]

Kitagawa, H., 2000: Radiation process. NPD Report No. 46, Numerical Prediction Division, JMA, 16-31. (in Japanese)

Nakanishi, M. and H. Niino, 2004: Improvement of the Mellor-Yamada level 3 model with condensation physics: Its de-sign and verification. *Bound.-Layer Meteor.*, **112**, 1-31.

Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266-1298.

Wong, W.K., 2010: Development of Operational Rapid Update Non-hydrostatic NWP and Data Assimilation Systems in the Hong Kong Observatory, *3rd International Workshop on Prevention and Mitigation of Meteorological Disasters in Southeast Asia*, 1-4 March 2010, Beppu, Japan. [Reprint available at http://www.hko.gov.hk/publica/reprint/r882.pdf]

Wong, W.K., S. Sumdin and E.S.T. Lai, 2010: Development of Air-Sea Bulk Transfer Coefficients and Roughness Lengths in JMA Non-hydrostatic Model and Application in Prediction of an Intense Tropical Cyclone. *SOLA*, **6**, 065-068.

Yabu, S., S. Murai, and H. Kitagawa, 2005: Clear-sky radiation scheme. *NPD Report No. 51*, Numerical Prediction Division, JMA, 53-64. (in Japanese)

Annex 1-13 APPENDIX 5-A, p.2

(+82) (64) 801-0200 (+82) (64) 805-0366

Fax:

Lao People's Democratic Republic

Jeju, 699-942, Republic of Korea

Ministry of Agriculture and Forestry, Department of VIENTIANE Meteorology and Hydrology	P.O. Box 811 Vientiane	Telex: Cable:	4306 ONU VTELS UNDEVPRO
Macao, China			
Meteorological and Geophysical Bureau (Director: Fong Soi Kun)	P.O. Box 93 Macao, China	Tel.: Fax: E-mail:	(+853) 88986 <u>1</u> 273 (+853) 28850773 meteo@smg.gov.mo
Malaysia			
Malaysian Meteorological Dep. (Central Forecast Office, Director: Mr. Saw Bun Liong)	Jalan Sultan 46667 Petaling Jaya Selangor Malaysia	Tel.: Fax: E-mail:	(+60) (3) 7967 8116 (+60) (3) 7967 8119 (+60) (3) 7955 0964 cfo@met.gov.my
Philippines			
Esperanza O. Cayanan Ph.D. Weather Services Chief Weather Division, PAGASA	WFFC Bldg., BIR Road, Diliman, Quezon City 1100	Telex: Tel.: Cable: Fax:	66682 WXMLA PN (+63) (2) 922 1996 66682 WX MLA (+63) (2) 922 5287 (24 hours)
T C S Secretary: Olavo Rasquinho	Avenida de 5 de Outubro Coloane, Macau	Tel: (85 Fax: (8 E-mail: olavo@	i3) 8 8010531 53) 8 8010530 typhooncommittee.org
Republic of Korea			
National Typhoon Center Korea Meteorological Adm. (Chief Executive: Tae Ryong Kim) 1662-1 Hannam-ri, Namwon-eup,	Seogwipo,	Tel.:	(+82) (64) 801-0200

Annex 1-14 APPENDIX 5-C, p.3

							Rece	eiving st	ation				
Type of Data	He	ading	TD	BJ	BB	ΗΗ	MM	SL	NN	KK	IV	PP	MC
			*										
Satellite	TPPN10	PGTW			TD	TD			BB	BB	BB	BB	
guidance	TPPN10	PGUA			TD	TD			BB	BB	BB	BB	
	TPPA1	RJTY	×	TD	TD	TD	TD		BB	BB	BB	BB	
		RODN) [*]						BR	BB	BR	BR	
		RJID			10		IJ	IJ		BB	ВВ	BR	
		VHHH		HH	HH	0							
		VHHH		НН	НН	0							
				НН	НН	0							
	100004	VHHH	ПП	Нп	Нп	0							
Tropical	FXPQ01	VHHH	нн	НН	BJ	0			BB	BB	BB	BB	НН
Cyclone	FXPQ02	VHHH	нн	нн	ВJ	0			BB	BB	BB	BB	НН
Forecast	FXPQ03	VHHH	нн	нн	ВJ	0			BB	BB	BB	BB	НН
	FXPQ20	VHHH	нн	нн	ВJ	0	TD	TD	BB	BB	BB	BB	нн
	FXPQ21	VHHH	нн	нн		0							
	FXPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ21	RJTD	ο	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ22	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ23	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ24	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ25	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ29	VTBB			0								
	FXPH20	RPMM	ММ	TD	TD	TD	0	TD	BB	BB	BB	BB	
	FXSS01	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	нн
	FXSS02	VHHH	нн	ΗΗ	BJ	0			BB	BB	BB	BB	ΗΗ
	FXSS03	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	HH
	FXSS20	VHHH	нн	нн	BJ	ο	TD	TD	BB	BB	BB	BB	НН
	FXSS21	VHHH	НН	НН		0							
Warning	W/DPN31		*	тп	тп	тп	тп	ΤΟ	RB	RR	RR	RB	
Wanning	WDPN32	PGTW	*	TD	TD	TD	TD	TD	RB	BB	RB	BB	
	WHC128	BCG7			R.I	R.I			B.I	BB	RR	BB	
	WHCI40	BAB.I	B.J	0	B.J	B.J			B.J	BB	BB	BB	
	WSPH	RPMM	*	TD	TD	TD	0	TD	BB	BB	BB	BB	
													-
	WTMU40	VMMC	BJ	MC	BJ	BJ			BB	BB	BB	BB	0
	WTPN21	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPH20	RPMM	MM	TD	TD	TD	0		BB		BB	BB	
	WTPH21	RPMM			TD		0		BB		BB	BB	
	WTPQ20	VHHH	НН	нн	BJ	0		TD	BB	BB	BB	BB	HH
	WTSS20	VHHH	НН	нн	BJ	0			BB	BB	BB	BB	HH
	WTTH20	VTBB	BB	TD	0	TD			BB	BB	BB	BB	
	WTVS20	VNNN			NN	BJ			0	BB	BB	BB	
Continued to	WTPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
the next page	WTPQ21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	

TABLE of Abbreviated headings (TTAAii CCCC)

TT	Data designator
FX	Miscellaneous forecasts
SB	Radar reports PART A
SC	Radar reports PART B
SD	Radar reports
	(PART A and PART B)
SN	Synoptic reports
	(non-standard hours)
TP	Satellite guidance
UA	Aircraft reports (AIREP)
UE	Upper-level observation, PART D
UK	Upper-level observation, PART B
UL	Upper-level observation, PART C
US	Upper-level observation, PART A
WD	Prognostic reasoning for typhoon
WH	Marine/Coastal floodHurricane
	warnings
WO	Other warnings
WC	Tropical cyclone(SIGMET)
WT	Tropical cyclone warnings
WW	Warning and weather summary

Η̈́.	Data distribution area
01-19	Global
20-39	Regional
40-89	National

TABLE of Abbreviated Headings (TTAAii CCCC) for BUFR

TTAAii CCCC	Data type	
ISBC01 RJTD	Radar reports	
ISBC01 VHHH	Radar reports	
IUCC01-04 VHHH	SAREP reports	
IUCC10 RJTD	SAREP reports	
ISBC01 RJTD	Radar reports	
IUCC10 RJTD	SAREP reports	

r	
AA	Geographic designator
CI	China
HK	Hong Kong <u>, China</u>
JP	Japan
KO	Republic of Korea
KP	Cambodia
LA	Lao People's Democratic Republic
MS	Malaysia
MU	Macao <u>, China</u>
PA	Pacific <u>area</u>
PH	Philippines
PN	North Pacific area
PQ	Western North Pacific
PW	Western Pacific area
SS	South China Sea area
TH	Thailand
VS	Viet Nam

CCCC	Location indicator
BABJ	Beijing
BCGZ	Guangzhou
KWBC	Washington
PGFA	Guam (F.W.C)
PGTW	Guam (JTWC)
PGUM	Guam (Agana)
RJTD	Tokyo
RJTY	Yokota
RKSL	Seoul
RKSO	Osan
RODN	Okinawa / Kadena AB
RPMK	Clark AB
RPMM	Manila / Intl.
VDPP	Phnom Penh
VHHH	Hong Kong
VLIV	Vientiane
VMMC	Macao
VNNN	Hanoi
VTBB	Bangkok
WMKK	Kuala Lumpur

LIST OF DATA ARCHIVED BY RSMC TOKYO - TYPHOON CENTER

(a) Level II-b

Kinds of data: Surface, ship, buoy, upper-air, RADOB, aircraft, ASDAR, advisory warning, SAREP, SATEM, SATOB, TBB grid value and cloud amount (GMS);

Area coverage:	SATEM	:	90°E ~ 180°E and 0° ~ 45°N
	SATOB, TBB grid value and cloud amount	e :	area covered by <u>Himawari series</u> MTSAT
	Other data	:	within the area of 80°E ~ 160°W and 20°S ~ 60°N

(b) Himawari imagery data

Himawari Standard Data (HSD):

Kind of data: Himawari full-spec imagery data

Data format: Himawari Standard Format (http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_us ers_guide_en_v12.pdf)

Meteorological Satellite Center Monthly Report (DVD):

Kinds of data: Himawari images in SATAID and PNG formats. (http://www.data.jma.go.jp/mscweb/en/product/library/report/)

Area coverage:

SATAID: 115°E ~ 150°E and 15°N ~ 50°N PNG: Full earth disk as seen from 140°E

(c) Level III-a

Kinds of data: Grid point data of the objective analysis obtained by the global objective analysis system in RSMC.

Area coverage: Global area covered by 1.25 X 1.25 latitude-longitude grid system.

Time of analysis: 00, 06, 12 and 18 UTC

Element and layer:

Surface: Sea surface pressure (Ps), temperature (Ts), dew point depression (Ts - Tds), wind (Us, Vs);

Specific pressure levels (1000 - 10 hPa): Geopotential height (Z), temperature (T), wind (U, V);